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Abstract

The paper studies how international transfers can Pareto improve
agreements on emission reductions. It re-interprets as a club model a
well-studied model of treaty participation. Without transfers, equilib-
rium club size is limited to being at most 2 or 3 countries. With bi-lateral
transfers, transfers voluntarily given by club members to non-members,
club size increases to at least N

2
, where N is the total number of countries.

Furthermore, inclusive of transfers, there is a Pareto improvement for all
N countries. Any further expansion and welfare improvement requires
multi-lateral transfers in which non-members can also commit to making
transfers. In that setting, there is an equilibrium with full participation
of all N countries and Utilitarian Pareto optimal emissions reductions by
every country. If the transfer choices are sequentially made, then that
globally implemented reduction is the unique equilibrium action.

1 Introduction

Climate Change is a global (dynamic) externality. The sovereignty of coun-
tries and the absence of relevant international courts means that agreements or
treaties to reduce emissions must be incentive compatible (IC) for each country.
Past environmental agreements have shown the consequences of ignoring these
incentive compatibility constraints. For example, the Kyoto Global Climate
Agreement in 1997 was touted to have “globally agreed emissions targets.”The
agreement was not ratified by the U.S. Similarly, the recent Paris Climate Ac-
cords set up self-agreed targets. However, these targets have not been achieved,
and there has been a lot of free-riding.
The concept of Climate Clubs has been offered as one possible solution to

this problem by Nordhaus (2015). A starting point is an acknowledgment that

∗The paper has benefitted from a presentation at Duke University. Discussions with Attila
Ambrus, Alp Atakan, Scott Barrett and Paolo Siconolfi have helped. Of course, all remaining
errors are our own.
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crafting a treaty that is incentive compatible for every nation is a tall order
as is monitoring such an agreement. Instead, Nordhaus proposed that a mini
multilateral agreement might be an achievable target.
The proposal is an adaptation of the idea of clubs first introduced by Buchanan

(1965). He had suggested that it might be easier to have a small group of indi-
viduals come together to provide a public good, i.e., for a small group to form a
club. A small group - Buchanan argued - would be able to monitor each other
better and set up requisite entry barriers. The Nordhaus (2015) extension of
this - in the climate change context - is that a club of possibly a small number
of nations may be able to agree to set and enforce club emission targets such
that no IC constraints would need to be checked for club members.
One key requirement of Buchanan’s club is for the good in question to be

(non-rival but) excludable. Hence, non-members can be excluded from the ben-
efits generated by the actions of club members (unless they pay the requisite
fee and join the club). This feature is evidently not true in the climate context.
If club members cut their emissions thereby lowering the stock of greenhouse
gases (GHGs), then non-members also benefit. To address this issue, Nord-
haus (2015) proposed that non-members be incentivized to “fall in line” and
cut emissions under the threat of trade sanctions, i.e., tariffs. As explained in
Nordhaus (2015) page 1341, “nonparticipants are penalized...[through] uniform
percentage tariffs on imports of nonparticipants into the club region.”
While the idea of imposing tariffs is attractive to many people - including a

certain US Presidential candidate - critics have pointed out that it violates the
GATT agreement that potential club members are signatories to. For example,
the Most Favored Nation (MFN) article of GATT (WTO 1994) states that,
“Under the WTO agreements, countries cannot normally discriminate between
their trading partners. Grant someone a special favor...and you have to do the
same for other WTO members.”More recently, countries in the EU have tried
to implement cross border adjustment mechanisms that try to go around this
problem by imposing tariffs on any import that doesn’t meet carbon abatement
targets. The rules have invited threats of retaliation from trading partners, as
well as protests from domestic manufacturers that are threatened by the policy.1

In this paper, we ask a different question —rather than the threat of sanc-
tions, is it possible to give positive incentives to push countries to reduce emis-
sions? This idea is rooted in the Coasian Perspective, that any externality can
be ameliorated by side-payments. In particular, a developing country may re-
duce emissions if paid to do so. Our paper is the first game theoretic formulation
of the club model, albeit with a focus not on tariffs but rather on transfers.
There are at least two reasons to think about this question. First, it can

be motivated by a financing concern; that developing economies will be simply
unable to marshall the resources, either by domestic fiscal means or through bor-

1From a modeling and analysis perspective, it is also a challenge to find a tractable yet
detailed enough trade model that can be merged with a climate change framework. Even
without the latter complication, as we have seen from a discussion of the Trump tariffs, there
is no consensus on how to determine the effects of tariffs. Different models suggest anything
from significant positive impacts on the nation imposing them to significant negative ones.
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rowing on international markets, to make the required large-scale low emission
transition. Or, second, the reparations argument; that developing economies
are being asked to bear the brunt of a problem that they did not create and
that is unfair.
Either way, as economists we can focus on the Coasian argument - that

if developing economies reduce their emissions due to side-payments that can
potentially lead to a Pareto improvement for all countries. In this way, payments
- that we will interchangeably also call transfers - are different from tariffs.
Tariffs are unlikely to lead to Pareto improvements unless they are never used;
unless, merely their threat suffi ces to change emissions behavior. By contrast,
transfers even when used, can improve welfare for both donor and recipients. If
the donors pay x to recipients to alter their choice from A to B and that change
improves donors’welfare by y > x, then both parties are better off.
Indeed, international payments have emerged as the single most contentious

issue at recent COP discussions. Historically, developing countries have re-
peatedly pushed for payments - justifying them as reparations - and developed
countries have pushed back for fear of opening a Pandora’s Box of historical
claims.
A breakthrough happened at COP 27 where even the United States finally

signed on to the idea of a climate fund. The New York Times thusly reported on
Nov 19, 2022: "In a First, Rich Countries Agree to Pay for Climate Damages
in Poor Nations". In the Report of the Conference it was stated that "Govern-
ments took the ground-breaking decision to establish new funding arrangements,
as well as a dedicated (Loss and Damage) Fund, to assist developing countries
in responding to loss and damage." It was further acknowledged that “transfor-
mation to a low-carbon economy will require investments of at least USD 4-6
trillion a year.”
However, many questions remained: who would pay, how much, when,

should larger players like China, that are now able to pay but were historically
not high emitters, receive payments? Etc.2

Whilst the discussion around international transfers has been vigorous at
various international forums, it has almost always been seen as a zero-sum fight
- developed countries perceive that they will be the losers by funding developing
ones. The latter see it as a rectification of past wrongs, reparations in the same
spirit as "paying for" the crimes of slavery or colonialism etc. As argued above,
with the back context of Coase, economists see it as a non-zero sum issue,
that there is a potential for both developed and developing countries to be
better off if the latter cut emissions and transition to renewables. The question
then becomes a cost-benefit issue for developed countries: is the benefit from
developing countries cutting emissions greater than the cost of funding those
cuts? To answer that question we need an understanding of how the Coasian

2There has been a back-slide subsequently. As the Washington Post reported on October
9, 2023 - "Promises from some of the world’s biggest economies, including the United States
and China, haven’t been panning out. Many are years behind schedule or still years away
from sending money." Only $9.3billion dollars had been sent to the Green Climate Fund by
then versus the estimated trillions required.
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mechanism will work.
That is what we propose to do in this paper. Naturally, our model will have

many simplifications and should be seen as a first cut at the question. It is,
however, a question that has been looked at almost not at all so far.3

The paper is divided into two halves, united in their focus on the effect
of transfers on equilibrium treaties. We start with a baseline well-studied
simple model of treaty building, Barrett (2005). In that model, countries decide
whether or not to sign onto a treaty that requires them to commit to cutting
emissions. These cuts help signatories since emissions are a public bad but also
help non-signatories who get to free-ride on the cuts. The focus in the model is
on participation: how many countries would sign such a treaty? There is a vast
literature studying that model and Barrett (2003, 2005) is a good summary.
The general conclusion is that treaty participation is extremely limited.
Formally, call the number of willing signatories to a club as K in a world of

N countries. Barrett (Chapter 28, 2006) and others show that, in equilibrium,
K ≤ 3, independent of N .4 This is because there is a discrete jump in payoffs
to a country when it opts out of a treaty (and free-rides on the emission cuts
of remaining club members). This is analogous to the discrete jump in market
share and hence payoffs when a firm makes a very small price cut in a Bertrand
competition model. Naturally, that is a disappointing result; sadly, it has been
found to be robust to variations in the payoff functions.
We re-interpret the treaty model as a club participation model by adding

incentives that could alter the amount of free-riding by non-participants. In the
treaty model, there is nothing to incentivize non participants; neither negative
incentives like Nordhaus tarrifs nor positive ones like international transfers.
As argued above, tariffs might violate GATT and are also diffi cult to model.
Hence, we instead add positive incentives to the model and ask: can one achieve
larger participation with (bilateral) transfers that flow from club members to
non-members?
The transfers have to be incentive compatible at club level in the sense that

a club can decide whether or not to offer them. We analyze in detail a simple
transfer scheme that a club might adopt which we call a threshold scheme. In
that scheme, transfers are offered if the club size is above a threshold K and -
when offered - the size of transfers is optimal for club members. We characterize
the size of the club K that can be achieved through such a scheme and show
that K ≥ N

2 . We then go on to analyze any transfer scheme that a club might
adopt and show the maximal (and minimal) reaches in participation on account
of different transfer schemes.
For all transfer schemes studied, there is Pareto improvement relative to the

no transfers outcome. Naturally, non-members are at least as well off when
they are offered transfers. What is striking is that club members are strictly

3There are relatively very few papers that have looked at the effect of international transfers
in a climate change context. These are discussed in Section 6, and include Carrao-Siniscalco
(1993), Chander-Tulkens (1995, 1997), Barrett (2003, 2005) and Dutta-Radner (2023).

4The exact variant of the model can be different but the general result is that K is very
small, or that N is very small.
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better off than in the no transfers case. This occurs because there is a global
increase in abatement; club members abate more given that the club is larger
and non-members abate more incentivized by transfers.
The baseline treaty model assumes symmetry, i.e., that countries have the

same benefit and cost parameters for emission reduction. Naturally, this is a
gross simplification. In particular, it does not allow us to ask: which are the
countries that are going to sign a treaty (and be members of the club)?
To address that issue, we introduce cost heterogeneity (to reducing emis-

sions). We show that countries that have the highest costs to reducing emissions
are most likely to be part of the club, i.e., those are the countries with the great-
est incentives to give transfers to have others reduce emissions. To the extent
that developed countries have the highest labor and other costs, one can inter-
pret this result as suggesting that transfers will flow from them to developing
economies.
Whilst having N

2 signatories is a significant improvement on having only
three participants, it is still way short of a global treaty that all countries sign
onto. Given the scale of the climate change problem, it remains an interesting
question as to how can we organize an agreement that will appeal to every
country and produce a globally effi cient outcome.
In the second half of the paper we show we can indeed do better. The crucial

idea here is that we allow any country to make transfers (to any other country)
rather than restrict transfers to only club members. After all we are dealing
with a global externality so a non-club member, country I, is affected by another
non-member J ′s abatement (and it is also affected by what club members K
do). So, why not allow I to make payments to J and K ? Whereas in the first
half of the paper only the K club members make (bilateral) transfers to all other
non-members I and J , now we analyze multi-lateral transfers that flow in all
directions. Potentially, some transfers would net out. For instance, there might
be very little net flowing from one developing country to another but typically
it would not be zero, as the (bilateral transfer) club model would require.
Beyond this change, the model remains the same. Each country has to decide

whether or not to join a club. Once membership is decided on, in a second stage,
the club - acting as one entity - and every non-member acting for itself, decides
on a best response transfer to make to others. Finally, in response to those
announced transfers, the club - acting as one entity - and every non-member
acting for itself, decides on a best response emission reduction.
We show that our setup is a special case of Bernheim-Whinston (1986), i.e.,

our model is a Common Agency in the sense of that paper. We then directly
show that there is an effi cient equilibrium, i.e., one in which the globally optimal
emission is chosen by every country having been incentivized by appropriate
transfers chosen in the second stage. Finally, in that equilibrium, all countries
sign on to be in the club, i.e., K = N .
However, as is well-known from Bernheim-Whinston (1986), in the Common

Agency model there might also be ineffi cient equilibria since transfers are chosen
simultaneously before emissions. This simultaneity can introduce free-riding;
both I and J are affected by the emissions chosen by K and are willing to pay
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to lower that but both prefer to have the other make the payment. When the
payment/transfer commitments are simultaneously chosen, I and J can end up
choosing ineffi ciently small transfers consequently.
In the last section of the paper we address that possibility by investigating

sequential transfer choices in the second stage: I announces its commitment to
K first which is seen by J who then announces its commitment. Otherwise,
the model remains unchanged. Each country has to decide whether or not to
join a club in the first stage. Once membership is decided on, the club decides
on transfers to give non-members and every non-member decides likewise. This
stage is sequential. Finally, in response to those announced transfers, the club -
acting as one entity - and every non-member acting for itself, decides on a best
response emission reduction. We show that in this setting, there is a unique
equilibrium emission reduction and that is one in which every country chooses
the globally optimal one.
The Summary of Results is in the table below. In equilibrium, K is

the club size, qK is the amount of abatement done by each club member, q∗

that done by non-members and q̂ is the Utilitarian Pareto Optimum (UPO)
abatement that is globally effi cient for a world of N countries. Turns out that
the abatement done by non-members without transfers is the smallest amount
and let us normalize that to 1. For No Transfer andMultilateral (Simultaneous)
modes, the best equilibrium in terms of abatement is reported while for the
Bilateral, a near-best equilibrium is reported.5 The last one - Muliti-Lateral
Sequential - has a unique abatement profile in equilibrum.

Transfer Mode Club size Abatement Levels Total Abatement
None K = {2, 3) q∗ = 1, qK = K 9 + (N − 3)
Bilateral K = N

2 q∗ = K + 1, qK = K N
2 (N + 1)

Multilateral (Simultaneous) K = N qK = q̂ = N N2

Multilateral (Sequential) V ariable q∗ = qK = q̂ = N N2

Section 2 presents the baseline Treaty Participation (Barrett) model that has
no transfers and reports the result on limited participation. Section 3 expands
the model to include transfers. It also presents results on expanded treaty par-
ticipation, Pareto improvement vis-a-vis the baseline model and the differential
incentives under heterogenity. Section 4 introduces the multi-lateral model with
transfers and presents a full characterization of equilibrium emissions. Section
5 studies sequential transfers in the multi-lateral model. A discussion of the
literature and open questions is in Section 6.

2 Clubs Without Transfers

We first present the baseline Barrett model which has no transfers. It is a static
model with no heterogenity in payoffs.

5Meaning that in the Bilateral Transfers case, there is a range of possible club sizes. The
largest is somewhat greater than the reported N

2
.
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2.1 Model

There are N countries (N ≥ 2). Each country i can choose the quantity of
abatement qi > 0. Abatement level qi can be interpreted as bringing emissions
down from a maximum level - say e - down to e−qi. Abatement contributes to a
public good, the sum of all abatements, but it imposes a private cost on country
i. In the model, the benefit is linear while the cost is quadratic. Writing q as
the vector of abatements, the payoff πi is

πi(q) = b
∑
k∈N

qk −
1

2
cq2i (1)

where b and c are non-negative constants that are the same across countries.
Countries can create a club of size K ≤ N . Club countries abate as a group

and therefore internalize any externality between them. This is an assumption -
that being in a club allows members to monitor themselves thereby "loosening"
incentive constraints (IC) within that sub-group.
Consequently, since the club acts as a synthetic player, it seems natural to

take the amount of abatement qK done by each club member to be the sub-group
optimal one, i.e., to assume qK as argmax

∑
i∈K

πi(q).6 The N −K non-members

are, however, free to individualistically choose their abatement levels. Call the
best response level, computed from Eq. 1 for each non-member, q∗.7 It is easy
to check that q∗ < qK since the club internalizes the externality that every
member’s abatement implies for the K − 1 others and hence abates more.
Timing - There are two stages: In Stage 1, countries simultaneously decide

whether or not to join a Club. Those decisions determine the size of K. Then,
in Stage 2, countries simultaneously pick qK and q∗. Only the latter is a best
response while the former is part of the (implicit) contractual requirement when
a country joins the club.
Equilibrium - A club size K is an equilibrium if no member wants to drop

out and no non-member wants to come in. So, if a country anticipates that
K − 1 others are going to join the club, it can a) join and abate at qK (when
N − K others are abating at q∗) or b) stay out and abate at q∗ (alongside
N −K others) and let K − 1 countries abate at qK−1. The participation IC for
members requires that a) has a higher payoff than b).
The second IC is that non-members do not want to join: abating at q∗ (along

with N −K − 1 others) is better than abating at qK+1 alongside the other K
club members.
The question of interest is - what is the highest value of K satisfying both

IC?
6Note that due to the linearity of πi, this argmax is independent of the abatement levels

chosen by non-members.
7Again, due to the linearity of πi, q∗ is independent of the abatement levels chosen by club

members.
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2.2 Limited Participation Result

A little bit of computation incorporating the values8 q∗ and qK leads to the
following payoff for a K club member

ΠK = B(N,K)− CK2, (2)

where B(N,K) = b2

c [K2 + N − K], C = b2

2c . Similarly, the payoff for a
non-member is

πK = B(N,K)− C. (3)

Note that a non-member has a higher payoff. This follows straightforwardly
from the fact that the public good is identical for members and non-members
but the latter abate at a lower level and hence incur a smaller cost.
What would make K∗ an equilibrium club size? The first IC to check is that

no member wants to leave the club, i.e.,

ΠK∗ > πK
∗−1.

A little bit of algebra on Eqs. 2 and 3 gives us that K∗ 6 3.
The second IC is that no non-member wants to come into the club, i.e.,

πK
∗ > ΠK∗+1. It is not diffi cult to check that this constraint is not binding

since it is satisfied by K∗ > 2. That yields the following result in the baseline
club model with no incentives targeted at non-members:

Proposition 1 The largest club size in the model without transfers is that of
three countries.

3 Clubs With Bi-Lateral Transfers

3.1 Model

We retain the base payoffs and abatement possibilities of the baseline Barrett
model. There is, again, a first stage in which countries choose whether or not
to be in the club and a final stage in which non-members choose their best
response abatement while club members abate at the contractually required
level qK , given club size K.
We add to the baseline model an intermediate stage - between the two stages

of choosing club membership (or not) and abating, there is a second stage in
which club members choose a transfer to make non-members abate more.
Note that, when offered a transfer schedule θ(•), a non-member’s payoff is

πi(q; θ) = b
∑
k∈N

qk −
1

2
cq2i + θ(qi), (4)

8Given the linear-quadratic payoffs, it can be shown that qK = Kb
c
and q∗ = b

c
.
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while that of a club member is

Πi(q; θ) = b
∑
k∈N

qk −
1

2
cq2i −

N −K
K

θ(qi), (5)

where θ(qi) is the transfer that each of the N−K non-members receive from
a club with K members.
Timing - To summarize, there are three stages. In the first stage, a set of

countries decide to enter or not enter a club. In the second stage, club members
"choose" the transfer schedule designed to make outside countries abate more.
In the third stage, all countries simultaneously choose their abatement levels,
non-members choosing a best response.
As in the model without transfers, the only real choice for club members is

in the first stage, whether or not to be in the club. If they do decide to become
members then they are contractually obligated to abate and offer a transfer
schedule at a level dictated by club size. As in the model without transfers,
we assume abatement levels are set at qK so as to maximize payoffs for the K
members. As for the transfer level, that too can be club size dependent and
we will denote it θK(•). We will explore the equilibrium properties of different
specifications of θK(•). Note that the best response for non-members is going
to be transfer dependent; call it q∗(θK).
Equilibrium - As before, a club size K is an equilibrium if no member wants

to drop out and no non-member wants to come in. So, if a country anticipates
that K − 1 others are going to join the club, it can a) join and abate at qK and
transfer according to the schedule θK(•) (with N−K others abating at q∗(θK))
or b) stay out and abate at q∗(θK−1) (alongside N −K others) and let K − 1
countries abate at qK−1. The participation IC for members requires that a) has
a higher payoff than b).
The second IC is that non-members do not want to join: abating at q∗(θK)

(along with N −K−1 others) and getting the associated transfer is better than
abating at qK+1 and providing a transfer θK+1(•) alongside the other K club
members.
The question of interest is - do transfers increase the highest value of K

satisfying both IC and, if so, by how much? The potential driver for such
expansion is that transfers increase the abatement levels of non-members. That
(possibly) increases the payoffs of club members (net of transfers). In that case,
club membership is more attractive.

3.2 Expanded Participation With Threshold Transfers

Let us start with a simple situation where the transfer schedules are size inde-
pendent but offered only if a threshold level is hit for club size.
Definition Consider a threshold size K̃. A transfer policy is a threshold

one if there is a size independent schedule θ(•) such that θ(q) is paid to a non-
member for every abatement level q but only if K > K̃. If the club size is
K < K̃, no transfers are provided.
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We start by specifying a particular size independent schedule θ(•). We then
examine what are the associated equilibrium club sizes K̃.

Recall that, in the absence of transfers, the best response abatement for a
non-member is q∗. Denote

v∗ = bq∗ − 1

2
cq∗2,

which is the "own" payoff to a non-member from its abatement choice q∗.9

Lemma 2 To induce an abatement q > q∗ the minimum transfer needed is

θ(q) = v∗ − [bq − 1

2
cq2], (6)

and that is independent of club size K and of the abatement choices of other
countries, whether they be members or non-members.

Proof. A non-member can always abate at q∗and receive no transfers. Hence,
if other non-members are abating q̃, a threshold transfer policy is incentive
compatible only if,

b[q +KqK + (N −K − 1)q̃]− 1

2
cq2 + θ(q) ≥ v∗ + b[KqK + (N −K − 1)q̃].

There is no reason to offer anything but the least amount of transfer required.
Hence, turning the above into an equality, dropping common terms and re-
arranging, we get Eq. 6. The lemma is proved.
From this point on, the transfer schedule given by Eq. 6 is the one we will

study. The next question is how many countries have an incentive to join a
club if they are required to make transfers according to that schedule. The first
thing we need to do is compute the payoff - net of transfers - that a club member
would get.
Note that the way we have constructed the transfer schedule θ(q) renders a

recipient indifferent across abatement levels. Which of these various q is most
profitable for club members to induce is hence the question to address. Club
members’payoffs at that most profitable q would be what a potential signatory
to membership would then consider.
Suppose we have a club of size K and it induces an abatement q. Then,

invoking Eq. 5, a club member’s payoff is

b[KqK + (N −K)q]− 1

2
cqK

2

− (N −K)

K
θ(q). (7)

9 In other words, the part of the payoff due to other j′s abatement choices, b
∑
j 6=i

qj , is

omitted.
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Since we are interested in finding the q that has maximum payoff for mem-
bers, we need only retain terms involving q and state the optimization as

max
q

[bq − θ(q)

K
],

or

max
q̃

[bq +
bq − 1

2cq
2

K
]

which gives the most profitable q to induce, q(K) as

q(K) =
b

c
(K + 1). (8)

Consequently, the payoff for a club member given abatements of qK from
fellow members and q(K) from non-members is

ΠK,θ = b[KqK + (N −K)q(K)]− 1

2
cqK

2

− (N −K)

K
θ(q(K)).

Plugging in for qK(= K b
c ), q(K)(= b

c (K + 1)) and for θ(q(K)) from Eq. 6,
and after doing some algebra, we get that

ΠK,θ = Bθ(N,K)− CK2, (9)

where Bθ(N,K) = b2

c [ 12K(N +K) +N −K] and C = b2

2c .
Recall that, when no transfers were offered, the payoff to a member - as

computed in Eq. 2 - is B(N,K) − CK2 where B(N,K) = b2

c [K2 + N − K].
In other words, net of transfers, a club member now has a higher payoff equal
to 1

2KN . This makes club membership more attractive and can, potentially,
increase club size in equilibrium.

Proposition 3 A threshold transfer strategy is an equilibrium if the threshold
K̃ satisfies the condition

2K̃ +
3

K̃
− 4 6 N (10)

This condition is satisfied for a range of thresholds [k(N), K(N)] with K̃ =
N
2 ∈ (k(N), K(N)). k(N) and K(N) are the smaller and larger solutions,
respectively, of 2K + 3

K − 4 = N . The largest club size is K(N). It increases

in N and K(N)
N converges to 1

2 as N −→∞.

Proof. What would make K̃ an equilibrium club size? The first IC to check is
that no member wants to leave the club, i.e.,

ΠK̃,θ = Bθ(N, K̃)− CK̃2 > πK̃−1,0 = B(N, K̃ − 1)− C,
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where πK̃−1,0 is the payoff from exiting the club. That causes two effects:
the club size falls to K̃ − 1 and - being below the threshold - transfers drop to
zero (which is denoted by the 0 in the superscript).
A little bit of algebra - using the values of Bθ(•), B(•) and C - yields the

implied condition of Eq. 10. It is straightforward to check that K̃ = N
2 satisfies

Eq. 10 for all N .
The second IC that needs checking is that no non-member wants to joing

the club if the size is K̃, i.e., that πK̃,θ > ΠK̃+1,θ. It can be shown that for any
K > K̃,

πK,θ = bθ(N,K)− C,

where bθ(N,K) = b2

c [(N − 1)K + N − K], and, recall C = b2

2c . Using the

value of ΠK̃+1,θ as computed in Eq. 9, a bit of algebra shows that this IC holds
provided

K̃ > N − 1

N − 2
,

and that holds since it holds whenever K > 2. Hence, the binding constraint
on the threshold strategy is the first one given by Eq. 10. The range of possible
equilibrium thresholds has hence been established.
Since the inequality defines a convex quadratic function, evidently the largest

club size is associated with the larger root. Simple computation yields

K(N) =
4 +N +

√
((4 +N)2 − 24)

4
,

from which it follows that

K(N)

N
=

1

N
+

1

4
+

√
(

1

16
+

1

2N
(1− 1

N
)),

which converges to 1
2 . The proof is complete.

Remark - Note that a club member’s payoff, as shown in Eq. 9 is given by
Bθ(N,K)−CK2 where Bθ(N,K) = b2

c [ 12K(N +K) +N −K] and C = b2

2c . By
contrast, a non-member’s payoff is given by bθ(N,K) − C, where bθ(N,K) =
b2

c [(N − 1)K + N −K], as seen directly above. It is easy to check that a non-
member has a higher payoff than a club member since they are not committed
to high abatement levels as club members are.

3.2.1 Generalized Threshold Transfers

The threshold transfer strategy can be generalized to the following off-path rule.
Definition (Off-path Transfers) If in a club of size K̃ one signatory drops,

then the remaining K̃ − 1 signatories commit to an abatement schedule of

qK̃−1 = (K̃−1)b
c and a transfer that makes non-signatories abate q̃K̃−1 = b

cx

where 1 ≤ x ≤ K̃.
The idea here is that there need not be a complete drop in transfers made

to non-club countries if some club country deviates. Club countries, as we shall
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see, can decide a drop in transfers that would be suffi cient to deter deviation by
club countries.

Proposition 4 There is an equilibrium with K̃ ≥ N
2 when club members pro-

vide transfers and the off-path rule followed is given in the Definition (Off-path
Transfers). The pair of highest off-path abatement quantity x and club size K̃
that can be sustained in equilibrium is given by

x =
N + K̃ − K̃2 − 3

2 + NK̃
2

N − K̃

Proof. Similar to Proposition 3, we need to check two IC conditions. Note that
the condition ensuring that the club of size K̃ will not expand to size K̃ + 1 is
the same as before,

K̃ > N − 1

N − 2
,

and is true whenever K ≥ 2. Therefore, our task is to ensure the other in-
centive compatibility condition, namely that no club country would want to exit
the club, now with the above-mentioned rule in Definition ((Off-path Transfers).
The IC condition for no member wanting to leave the club,

ΠK̃,θ = Bθ(N, K̃)− CK̃2 > πK̃−1,x = b[(K̃ − 1)2 + 1 + (N − K̃)
xb

c
]− C

where πK̃−1,x is the payoff from exiting the club. In this case, there are two
effects, the club size falls to K̃ − 1, and the transfers drop to an amount that
ensures x bc is abated by every country outside the club. A little bit of algebra
shows that the maximum sustainable abatement amount for non-club countries
is:

x =
N + K̃ − K̃2 − 3

2 + NK̃
2

N − K̃
It is easy to check that K̃ = N

2 is always an equilibrium, and that the highest
K̃ > N

2 .
The above result can be seen from Figure 1 where the club size is plotted on

the x-axis and the required off-path transfer is on the y-axis. N = 150, which
is close to the number of countries represented in international bodies.
The above result can be seen from Figure 1 where the club size K is plotted

on the x-axis and the required off-path transfer x is on the y-axis for a model with
N = 150, which is close to the number of countries represented in international
bodies. The figure indicates that the maximum achievable club size is roughly
77 > N/2.
Remark - Note that the earlier observation, that non-members have a higher

payoff in equilibrium compared to club members, continues to be true. This is
because that is not an off-path comparison but rather one for any K that is
on-path. Generalized threshold strategies can change the value of K but not
the on path ranking of payoffs.

13



3.3 Pareto Improvement With Transfers

In this subsection we look at two questions: how do equilbrium payoffs change
with club size? And, how does the transfer model payoffs compare with the no
transfer ones.
Note first that a larger club is good for both club countries and non-club

countries, as a look at their payoffs, given by ΠK̃,θ and πK̃,θ respectively, indi-
cates. The below result directly follows and we state it without proof.

Proposition 5 Equilibrium payoffs increase in K̃ for both signatories and non-
signatories

Second, we note that transfers do indeed cause a Pareto improvement, in-
creasing payoffs for both club and non-club members. This emphasizes the
importance of transfers in achieving larger club sizes.

Proposition 6 Transfers effect a Pareto improvement in equilibrium for both
club members and non-members.

Proof. For any club with threshold size K̃, the difference in payoff for a club
country between a world with transfers and a world without transfers is

ΠK̃,θ −ΠK̃ = (N − K̃)
K̃

2
> 0

For each non-club country, the difference in payoffs with transfers and without
transfers is:

πK̃,θ − πK̃ = (N − K̃ − 1)K̃ > 0

Hence, for both club and non-club members, transfers lead to a Pareto improve-
ment.

3.4 Heterogeneity

The results in the previous section leads one to ask the following question:
which countries should be in the club? This of course requires some concept
of heterogeneity since in the perfectly homogeneous model every country is the
same. Consider then, that each country i differs in the cost of its abatement ci.
We think of this cost as the labor cost of abatement. Or, equivalently, the cost
it takes for a country to create investments such as forests, that are important
carbon sinks.
This simple source of heterogeneity allows us to order the countries that will

join the club. This result is applicable for the generalized threshold transfer sys-
tem, and a fortiori, applies to the simple threshold strategy as well. It provides
a rationale for some countries for being the club while others staying outside.

Proposition 7 If the ci differ, then greatest incentive to join is for the coun-
try with the highest ci. Hence, the largest club size K is derived when the K
countries with the highest ci join the club.

14



Proof. In the final stage, let there be a club with threshold size K̃. The club
countries will set a target for each non-club member that they will try to achieve
from transfers. This target is obtained by solving for each non-club country i:

max
q̃
bq̃ +

bq̃ − 1
2ciq̃

2

K̃

which gives us, as before

q(K̃) =
b

ci
(K̃ + 1) (11)

Therefore, each non club country will be induced to abate q(K̃). The difference
now is that the abatement quantity differs by the cost of abatement for each
non-club country.
As usual, each club country j will abate:

q(K̃) =
K̃b

cj

As before, the punishment off-path will be to induce xb
ci
abatement by the non-

club countries if the size goes below the threshold size, to K̃ − 1. Assume that
the K̃’th country deviates and leaves. The upper-bound on the value of x can be
calculated, taking care now of the different costs of abatement for each country:

ΠK̃,θ

K̃
≥ πK̃−1,x

K̃

The subscript K̃ accounts for the payoff of the K̃’th country incorporating the
heterogeneity in costs. Furthermore, the payoffs on either side can be written
as,

Bθ
K̃

(N, K̃)− CK̃K̃
2 ≥ b2[(K̃ − 1)

K̃−1∑
j=1

1

cj
+

1

cK̃

N∑
i=K̃+1

x

ci
]− CK̃

where Bθ
K̃

(N, K̃) = b2[K̃
∑N
k=1

1
ck
−
∑N
i=K̃+1

K̃/2−1
ci

] is the version of Bθ(N, K̃)
under heterogeneity taking into account the different costs of abatement for each
country. Similarly, CK̃ = b2

2c
K̃
.

Some algebra allows us to calculate the largest x that can be sustained in
equilibrium

x ≤
∑K̃
j=1

1
cj

+
∑N
i=K̃+1

K̃/2+1
ci

+ K̃
c
K̃
− K̃2

2c
K̃
− 3

2c
K̃∑N

i=K̃+1
1
ci

It is easy to see that this expression under homogeneity will give the same
expression for x as in the previous subsection.

Now that we have obtained a sense of off-path transfers that sustain equi-
librium, we can now consider the participation decision in the first stage. Let’s
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say some country j considers the benefit of deviating and not joining the club.
First, the payoff from being in the club for any country is given by,

b2[
K̃

c1
+ ...+

K̃

cK̃
+
K̃ + 1

cK̃+1
+ ...+

K̃ + 1

cN
]− 1

2

b2

cj
K̃2 − θ̃j

The transfer θ̃j can be obtained by observing that it will be j’s fraction of total
transfers made to all non-club countries. In other words, θ̃j = 1

K̃

∑N
i=K̃+1 θ̃i.

The transfer received by a country i is,

θ̃i =
1

2

b2

ci
[1− [(K̃ + 1)− 1

2
(K̃ + 1)2]] =

K̃2

2

b2

ci

Hence, we can substitute in the value of θ̃j to get the payoff from staying in the
club,

b2[
K̃

c1
+ ...+

K̃

cK̃
+
K̃ + 1

cK̃+1
+ ...+

K̃ + 1

cN
]− 1

2

b2

cj
K̃2 − b2K̃

2
[

1

cK̃+1
+ ...+

1

cN
]

The first and third terms are the same for every club country. The only thing
that differentially affects the payoff from being in the club is the second term
which increases as the cost cj increases. In other words, a country with higher
cj has a greater payoff from being in the club.

The other payoff we need to calculate is that from choosing to be outside
the club, noting that every non-club country is induced to abate xb

ci
, while the

deviating country j obtains a payoff from its own abatement action which is
exactly equivalent to complete free-riding,

b2[
K̃

c1
+ ...+

K̃

cj−1
+

K̃

cj+1
+ ...+

x

cK̃+1
+ ...+

x

cN
] +

1

2

b2

cj

This payoff clearly decreases as cj increases. In other words, a country with
higher cj has a lower payoff from deviating and leaving the club. This completes
our proof. Naturally, the configuration of countries that leads to the biggest club
size will be that when the K countries with the highest c’s join the club

4 Multi-Lateral Transfers and Effi ciency

4.1 Model

So far we only allow club members to make transfers. This section outlines a
model in which non-members can also do so. We retain the perspective that a
club acts like a synthetic player, choosing its actions to optimize for the whole
group. Hence, as before, the club picks transfers to best motivate non-members
and picks its abatement level at a best response. Now that non-members can
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also choose transfers, the club’s best response abatement will not only depend
on club size but also the size of the transfers from non-members.
Timing - There are three stages. In the first stage, a set of countries decide to

enter or not enter a club. In the second stage, club members and non-members
choose transfer schedules designed to make other countries abate more. In the
third stage, all countries simultaneously choose their best response abatement
levels. In stages two and three, each non-member chooses a best response for
itself and the club does so as well (but as a single synthetic player).
Let K denote a club - as also the size of the club. Let qK denote the

per capita abatement of each club member and let θKi(•) denote the transfer
schedule offered to a non-member i by the club. Similarly, θiK(•) denotes the
transfer made by a non-member to the club. We continue to assume transferable
utility; a non-member’s payoff is

πi(q; θ) = b
∑
k∈N

qk−
1

2
cq2i +

∑
j 6=i,K

θji(qi)+θKi(qi)−
∑
j 6=i,K

θij(qj)−θiK(qK), (12)

where j is another non-member. Similarly, the payoff of a club member is

Πi(q; θ) = b
∑
k∈N

qk −
1

2
cq2K +

1

K

∑
i 6=K

θiK(qK)− 1

K

∑
i 6=K

θKi(qi). (13)

Equilibrium - In the third stage, qK and qi are chosen to, respectively, max-
imize Eqs. 13 and 12. In stage two, keeping that in mind, θK and θi are chosen
so as to maximize payoffs of each player and the club. That determines a value
in the game for a non-member as well as a club member and these values may
vary depnding on the size of K. In stage one, a club size K is an equilibrium if
no member wants to drop out and no non-member wants to come in.
The question of interest is - does allowing global transfers, and not restricting

them to only come from the club, increase the highest value of K in equilibrium
and, if so, by how much? Does it also lead to greater cumulative abatement?

4.2 The Common Agent Set-up

Suppose we are at the second stage, i.e., club size K has already been deter-
mined. Without loss, suppose we label countries such that i = 1, ...N −K are
the non-members.
What remains to be determined are the transfer choices in stage two and the

consequent abatements in stage three. We first show that our setup is a special
case of Bernheim-Whinston (1986). We then characterize the precise equilibria
in our setting.
In stage two, each non-member country i chooses transfers θij and θiK where

θij ≥ 0, θiK ≥ 0 ; i, j = 1, ..., N −K , i 6= j. Similarly, the club chooses θKi,
i = 1, ..., N−K. These choices incentivize the abatement choices in stage three.
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Consider a non-member i. In stage three, it picks qi to maximize Eq. 12.
Dropping all terms that do not involve qi gives us the following optimization:

max
qi

[bqi −
1

2
cq2i +

∑
j 6=i,K

θji(qi) + θKi(qi)],

which leads to a solution qi(θji, θKi, j 6= i,K). Note that this optimization
is independent of the contemporaneous choices qj and qK . It is also independent
of transfers targeted at countries other than i. Put differently, starting at stage
two, we have a Bernheim-Whinston (1986) Common Agency problem with non-
member i a common agent for the N −K− 1 Principals who are the other non-
members and, additionally, the club also acting as a Principal. By Bernheim-
Whinston (1986) we know that there is at least one equilibrium, starting in stage
two, that involves i playing the effi cient action, i.e., q̂ = arg maxqi [Nbqi− 1

2cq
2
i ].

We can - alternatively - construct that equilibrium directly in our model.

Lemma 8 For any club size K, there is a continuation equilibrium in the sub-
game in which each country, whether they be a non-member or a club member,
abates at q̂, for all countries i = 1, ..., N −K and club K.

Proof. For every other non-member j 6= i, consider the following transfer
scheme:

θji(q̂) =
1

N − 1
{v∗ − [bq̂ − 1

2
cq̂2]},

= 0, qi 6= q̂,

which is a Dirac version of the transfer scheme of the previous section given
by Eq. 6 and where, recall, v∗ = bq∗ − 1

2cq
∗2 . The club offers an aggregated

version of that transfer,

θKi(q̂) =
K

N − 1
{v∗ − [bq̂ − 1

2
cq̂2]},

= 0, qi 6= q̂.

We first show that these are best responses to each other. Consider the best
response transfer choice of a non-member j. If it provides the stated transfer at
q̂, then country i would abate at q̂ and j′s payoff (due to that abatement alone)
would be

bq̂ − θji(q̂) =
Nbq̂ − 1

2cq̂
2

N − 1
− v∗

N − 1
. (14)

It can also give less than the stated amount in which case country i would
pick q∗ and j′s consequent payoff would be

bq∗.

The transfer induced payoff, Eq. 14 is better iff

Nbq̂ − 1

2
cq̂2 > (N − 1)bq∗ + v∗ = Nbq∗ − 1

2
cq∗

2

, (15)
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and that holds by definition. Consider instead the best response of the club.
If it provides the stated transfer at q̂, then country i would abate at q̂ and club
K ′s payoff (due to that abatement alone) would be

Kbq̂ − θKi(q̂) = K[
Nbq̂ − 1

2cq̂
2

N − 1
− v∗

N − 1
]. (16)

It can also give less than the stated amount in which case country i would
pick q∗ and K ′s consequent payoff would be

Kbq∗. (17)

The transfer induced payoff, Eq. 14 is better iff the RHS of Eq. 16 is greater
than Eq. 17 and that, of course, is implied by Eq. 15. Now consider the club.
Now consider the club. If no transfers are provided they would pick qK =

arg maxq[bKq − 1
2cq

2]. Call the associated value vK . Evidently, the club is
indifferent between qK and q̂ provided the transfer θiK(q̂) each non-member
makes to the club satisfies

KvK = K[bKq̂ − 1

2
cq̂2 +

N −K
K

θiK(q̂)] (18)

where Eq. 18 has the appropriate adjustments to accounte for the fact that
there are N −K non-members and the club size is K. Suppose, as before, that
transfers are only made for q̂. A non-member is willing to do that provided
payoffs net of transfers are better than the no transfer outcome, i.e.,

bKq̂ − θiK(q̂) > bKqK .

Substituting from Eq. 18, that turns out to be equivalent to

Nbq̂ − 1

2
cq̂2 > (N −K)bqK + vK = NbqK − 1

2
cqK

2

and that holds by definition. The lemma is proved.
Now we go to the first stage. Regardless of how many countries sign on to

be in the club, by the Lemma above, the eventual abatement is the utilitarian
optimal q̂ and the transfers all cancel out. So, every country’s payoff, indepen-
dent of K, is Nbq̂ − 1

2cq̂
2. Hence, one possible equilibrium in the participation

stage is for each country to sign on, i.e., for K = N . Hence, we have proved

Proposition 9 There is an equilibrium with K = N and every country abating
at the UPO q̂.

5 Sequential Transfers and Unique Effi ciency

Whilst effi cient abatement is an equilibrium in the club model studied in the
last section, it is just one of many possible equilibria. That leaves open the
question of whether there is a club model in which effi cient abatement is the
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only equilibrium. That is exactly what we do in this section. We do that by mo-
tivating club formation through a sequential design. In this design, the transfer
schedules are chosen sequentially. The club sets things off by announcing how
much it will pay each of the non-members to encourage abatement by them and
then non-club members sequentially decide how much, if anything, to pay other
countries including the club.
Timing - There is, again, a first stage in which countries choose whether or

not to be in the club. This is followed by a second stage with N −K + 1 sub-
stages. As above, and without loss, suppose non-members are labeled 1, ...N−K.
In sub-stage 0, the club announces its commitment to non-members θK,j(•),
j = 1, ...N −K. Call the vector θK .The commitments can be zero. In sub-stage
1, (non-member) country N − K picks transfers for the club θN−K,K(•) and
for other non-members θN−K,j(•), j = 1, ...N − K − 1. Call the vector θ1.
Then, in sub-stage 2, (non-member) country N −K − 1 picks transfers for the
club and for other non-members. And so on, till non-member country 1. Then
there is a final stage in which every country (simultaneously) chooses their best
response abatement. As before, for a club, the choices in stages two and three
are collectively made as if the club is a single (synthetic) player.
Payoffs incorporate transferable utility and are given by Eqs. 12 and 13.
Equilibrium - In the third stage, qK and qi are chosen to, respectively, maxi-

mize Eqs. 12 and 13. In every sub-stage of stage two, θK and then, sequentially,
non-member commitments θi are chosen looking ahead at subsequent choices.
For instance, when country 1 chooses θ1 it already knows the club’s choice θK
as well as θi, i 6= 1. Call that vector of vectors θ−1. Hence, it chooses a best
response θ1 given θ−1 thereby creating a best response function θ1(θ−1).
Look now at the best response choice of the penultimate chooser, country

2. At that point, it already knows the club’s choice θK as well as θi, i 6= 1, 2.
Call that vector of vectors θ−12. In making its choice, 2 takes account of the
subsequent best response function θ1(θ−1) as well as θ−12. Hence, it chooses a
best response function θ2(θ−12). And so on.
Given a sequence, these sequential transfer choices determine a value in the

game for every non-member as well as for a club member. In stage one, using
these values, a club size K is determined as an equilibrium such that no member
wants to drop out and no non-member wants to come in.
The question of interest is - do sequential transfers narrow the range of

possible equilibrium abatements while retaining effi ciency as an option?

5.1 The Sequential Common Agent Set-up

Suppose we are at the second stage, i.e., club size K has already been deter-
mined. What remains to be determined are the sequential transfer choices in
stage two and the consequent abatements in stage three. We first show that
our setup is a special case of Prat-Rustichini (2003) and Dutta-Siconolfi (2024).
Their results conceptually pin down the equilibrium possibility in stages two
and three of our game. We discuss their results and then directly and fully
characterize equilibria in our setting.
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Consider a non-member i’s choice in stage three. As in the rest of the
analysis, it picks qi to maximize Eq. 12 and that optimization is independent
of the contemporaneous choices qj and qK and is also independent of transfers
targeted at players other than i. Hence, i is, as in the previous section, a
common agent for the N−K−1 Principals who are the other non-members and,
additionally, the club also acting as a Principal. Unlike Bernheim-Whinston
(1986) though, the Principals choose transfers sequentially and hence their result
cannot be directly applied.
Prat-Rustichini (2003) amended the Bernheim-Whinston (1986) setting to

allow sequential transfers in the common agent setting, allowing the Principals
to pick compensation functions for the agent sequentially. In turn, their problem
is a special case of Dutta-Siconolfi (2024) that considers the play of any stage-
game - not just a Common Agent game - and models a pre-play phase in which
the players sequentially choose side-payments for each other. In the Common
Agent setting, Prat-Rustichini (2003) show that there there is a unique action
taken in equilibrium by the agent and that is the socially optimal one. Dutta-
Siconolfi (2024) show that result holds more generally in any game. In our
setting, the two results assert that equilibrium action is unique and effi cient.
However, the results do not tell us what the on-path transfer schedules will be,
just that their exist schedules that support subsequent effi cient abatement.
To exactly characterize the transfers, we directly construct them.

Lemma 10 For any club size K, there is a unique continuation equilibrium
action vector and that is one in which each country, whether they be a non-
member or a club member, abates at q̂, and this is true for all countries i =
1, ..., N . On path, transfers are minimally suffi cient to induce that abatement
level.

Proof. Suppose a non-member i is the common agent.
Consider the last transfer chooser, country 1 and consider its choice of θ1i

chosen to influence the abatement choice of country i. At that point all com-
mitments except those of country 1 have already been announced; denote that
vector θ−1. Denote further by vi(θ−1) the highest payoff i can obtain given
those commitments, i.e.,

vi(θ−1) = maxqi{bqi −
1

2
cq2i +

N−K∑
j=2

θji(qi) + θKi(qi)}

Clearly, i can do no worse than get a payoff of vi(θ−1) no matter what
country 1′s commitment turns out to be since such a commitment can only
increase that value. However, 1 can induce any abatement q provided it gives a
transfer θ1i(q) that satisfies

bq − 1

2
cq2 +

N−K∑
j=2

θji(q) + θKi(q) + θ1i(q) = vi(θ−1). (19)
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The best such q from the perspective of country 1 can be deduced by max-
iming its payoffs on account of country i′s abatement, i.e., by solving

max
q
{bq − θ1i(q)}

= max
q
{2bq − 1

2
cq2 +

N−K∑
j=2

θji(q) + θKi(q)} − vi(θ−1)

≡ v1i(θ−1),

where the second expression follows by substituting from Eq. 19 and v1i(θ−1)
is the highest value that country 1 can derive from the common agent i′s abate-
ment given the commitments of all donors but 1. Between them, countries 1
and i hence maximally get a value we denote V1i(θ−1):

V1i(θ−1) ≡ v1i(θ−1) + vi(θ−1) = max
q
{2bq− 1

2
cq2 +

N−K∑
j=2

θji(q) + θKi(q)}. (20)

Consider now the second to last transfer chooser, country 2 and consider its
choice of θ2i again chosen to influence the abatement choice of country i. At
that point all commitments except those of countries 1 and 2 have already been
announced; denote that vector θ−12.

We can deduce from the immediately preceding that the pair of countries 1
and i can do no worse than get a payoff of V1i(θ−12, θ2 = 0) no matter what
country 2′s commitment is. However, 2 can induce any abatement q provided
it gives a transfer θ2i(q) that satisfies

2bq − 1

2
cq2 +

N−K∑
j=3

θji(q) + θKi(q) + θ2i(q) = V1i(θ−12, θ2 = 0). (21)

The best such q from the perspective of country 2 can be deduced by max-
iming its own payoffs on account of country i′s abatement, i.e., by solving

max
q
{bq − θ2i(q)}

= max
q
{3bq − 1

2
cq2 +

N−K∑
j=3

θji(q) + θKi(q)} − V1i(θ−12, θ2 = 0)

≡ v2i(θ−12),

where the second expression follows by substituting from Eq. 21 and v2i(θ−1)
is the highest value that country 2 can derive from the common agent i′s abate-
ment given the commitments of all donors but 1 and 2. Between them, countries
1, 2 and i hence get a value we denote V12i(θ−12):

V12i(θ−12) ≡ v2i(θ−12)+V1i(θ−12, θ2 = 0) = max
q
{3bq−1

2
cq2+

N−K∑
j=3

θji(q)+θKi(q)}.
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The logic of the above arguments applied recursively to all non-members says
that collectively, given any club commitment θKi, they get a value we denote
V−K(θ−K):

V−K(θ−K) = max
q
{(N −K)bq − 1

2
cq2 + θKi(q)}.

The club can induce any abatement q provided it gives a transfer θKi(q)
that satisfies

(N −K)bq − 1

2
cq2 + θKi(q) = V−K(θ−K = 0). (22)

The best such q from the perspective of the club can be deduced by maximing
its club payoffs on account of country i′s abatement, i.e., by solving

max
q
{Kbq − θKi(q)}

= max
q
{Nbq − 1

2
cq2} − V−K(θ−K = 0)

where the second expression follows by substituting from Eq. 22. The solu-
tion is, of course the UPO abatement q̂.
The same logic works if the abatement chooser is the club and the non-

members sequentially incentivize it to pick their preferred abatement. We have
hence shown that the unique equilibrium abatement in stage three is the optimal
one - and this is true for every country. We have also exactly - though implicitly
- characterized the on path transfers in stage two. The lemma is proved.

Now we look at the very first stage, that of choosing whether or not to
be in the club. The incentives now will depend on the labeling of countries
1, ...N since that will determine their place in the sequence if they choose not to
enter the club. Depending on the parameters, it might be more profitable to be
outside the club if the label number is higher - a last mover advantage - or lower
- a first mover advantage. In the symmetric model we are analyzing that will in
turn determine who - and how many - join the club. Regardless though, due to
the lemma above, the abatement outcome will be effi cient. In other words we
have the following result:

Proposition 11 There is an equilibrium club size K > 1. No matter how large
the club is, the unique subgame perfect equilibrium is one in which the abatement
is Utilitarian Pareto Optimal for all countries, i.e., qi = q̂, i = 1, ...N .

6 Literature and Extensions

6.1 Literature

The first important reference point for our work is Barrett (2003) which offers a
textbook treatment of international environmental treaties. Chapter 7 of Bar-
rett (2003) models the treaty participation game. It starts with a linear model
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of benefits and costs with three stages, a participation stage where countries
decide to be in the treaty, then stage two where the treaty countries cooper-
atively decide their abatement, and the last stage where non-treaty countries
decide their abatement. The general result that emerges is that large treaty
sizes are not attainable unless the parametrization implies very little benefit of
forming large treaties. The chapter considers different specifications of benefits
and costs, including of a linear-quadratic, concluding that the result that large
effective treaties are not attainable in equilibrium is robust.
Chapter 13 of Barrett (2003) then considers the idea of side-payments. The

result achieved is that side-payments are only effective (i) if the countries are
“strongly”asymmetric, and (ii) they are accompanied by the threat of reduction
in abatement by club countries.
We maintain a similar structure as in Barrett (2003, 2005) in two of our three

stages - the first, when countries decide whether to participate in the club, and
the third, when club members cooperatively choose abatement. Where we differ
is in the second transfer stage. In the first half of our paper, we model bilateral
transfers alone - where club countries give transfers to non-club countries and in
the second half we study multi-lateral transfers that can go in both directions.
In either case, and this is one key difference with Barrett (2003), our transfers
incentivize abatement directly. By contrast, his transfers aim to incentivize
non-club countries to join the club. And that makes a significant difference to
the results.
Furthermore, unlike Barrett (2003), we do not require any asymmetry for

our results, although heterogeneity may help by expanding the club and by
providing order to the countries that become part of the club. Nor do we
require club countries to reduce their own abatement if the club size falls.
The idea of treaty participants acting collectively has been modeled by sev-

eral papers in the literature, see Hoel (1992), Carrao and Siniscalco (1993),
Barrett (2005). In particular, Carrao and Siniscalco (1993), in a modelling envi-
ronment similar to the standard treaty set-up, claim that side-payments cannot
increase the size of the treaty. Their impossibility result, however, depends on
added constraints that are extraneous to the model. First, they only consider
transfers to non-treaty countries that are lump sum. Second, the transfer re-
cipient country is required to abate at the same level as the donor countries.
We show that (i) having a transfer schedule (rather than lump sum payments),
and (ii) inducing recipient countries to abate K + 1 while club countries abate
K allows for a Pareto improvement in abatement, and larger club sizes. The
impossibility result does not hold without those additional constraints.
In addition, to achieve positive results, Carrao and Siniscalco (1993) intro-

duce different forms of commitment, which essentially prohibits an initial set of
treaty countries from leaving the treaty. With this commitment, side-payments
can increase the size of the treaty. Our paper does not require any such form
of commitment. Countries choose their abatement and transfers willingly, and
club participation involves incentive compatibility. The transfers are aimed at
incentivizing non-club countries to abate more. This is an important reason why
our model is closely related to Nordhaus’idea of climate clubs, which is a group
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of countries that induce outside countries to abate more, as we demonstrate in
the first part of our paper.
Another relevant reference point are constituted by the papers by Chander

and Tulkens (1995, 1997). They obtain a result of full participation that is based
on the idea that if any country deviates and leaves the treaty, then the remaining
treaty members leave the treaty and act non-cooperatively. The beliefs needed
to sustain this equilibrium ensures that no country or coalition of countries can
benefit by a deviation. We do not require the need for beliefs that sustain or
drive the abatement decision by the club countries. The countries always choose
their abatement level based on their decision to be in the club or not. In other
words, if any country deviates, the other countries continue abating as a group.
We also do not depend on the idea of the core in our paper, that underlies these
series of papers.
The economics literature on climate clubs, a idea proposed by Nordhaus

(2015), is relatively newer and therefore smaller. Nordhaus’ proposal cen-
ters on the importance of trade sanctions that induce non-club participants
to abate more. Nordhaus (2021) provides a modification of this approach where
they combine trade sanctions with technological advancement in a multi-period
model, and provide numerical results to support the importance of both bene-
fits. This latter idea is related to Heal (1992) who considers the cost reduction
achieved when more countries adopt higher abatement, thereby encouraging
more participation.
Another strand of the literature looks at dynamic climate agreements. A

widely used framework is Dutta and Radner (2004, 2009), that has a “sta-
tic reduction,” and which we use in Section 6.2 when considering a dynamic
model. This framework has been used in several papers. Notable among them
is Battaglini and Harstad (2016) look at the interplay of coalition size, the com-
pleteness of contracting, and contracting duration. Harstad (2023) analyzes the
idea of countries making pledges which then have to be unanimously approved.
Lastly, there is a literature on side payments under the concept of common

agency, a literature started by Bernheim and Whinston (1986). Under condi-
tions provided by Bernheim-Whinston (1986), an equilibrium with full partic-
ipation is implied in our set-up. We contribute by characterizing the full set
of equilibria that can be achieved. Finally, our sequential equilibrium set-up
builds on Prat-Rustichini (2003) and Dutta-Siconolfi (2024) that allows us to
characterize the unique SPE that is achieved in Section 5.

6.2 Extensions

There are three directions in which the model can be readily extended.
Heterogenity - As we saw in Section 3.4, we can make the cost of abatement

heterogenous and still derive a prediction on which countries are more likely to
be in a climate club. It is our belief that one can do something similar by
making the public good benefit parameter heterogenous instead. Whether we
will still be able to derive a clear-cut result if both cost and benefit paramters
are heterogenous, remains to be explored.
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When it comes to the multi-lateral models of Sections 4 and 5, absolutely
nothing changes in the results if we introduce heterogenity in both parameters.
This is because the analysis essentially depended on isolating each country as
a common agent and then focusing transfers by the other countries on that
common agent. Since no comparisons need be made across countries, the exact
same analysis - and hence results - would work in the heterogenous case.
Separable Payoffs - What if payoffs do not have the linear quadratic form

studied in this paper? Turns out what is critical is separability.
Let us take that in two steps. Suppose that benefits and costs to abatement

remain separable. That seems like a natural assumption since benefits depend
on the public good nature of collective abatement while costs depend on the
size of private abatement. In that setting, absolutely nothing changes if costs
are not quadratic (but benefits remain linear). Of course, the exact number of
treaty signatories in the models of Sections 2 and 3 are not possible to compute.
However, the qualitative conclusions that club size is small without transfers and
expanded by adding transfers, remains unchanged. Moreover, the common agent
reduction of Sections 4 and 5 are wholly unchanged and so are the results. Again,
keeping in mind that the exact formula for the Utilitarian Pareto Optimum
abatement cannot be exactly computed if costs are, say, any convex function,
rather than being exactly quadratic.
If the benefit function is not linear, then matters can get a little more com-

plicated. If they remain separable, the analysis still applies. For example, if the
total benefit is the sum of each benefit possibly filtered through a functional
form - say, b

∑
k∈N q

α
k , for some α in (0, 1] - then there is no problem and we

can readily apply the methodology of this paper. In Sections 2 and 3, we could
even compute club size given a specific functional form for the private costs. In
Sections 4 and 5, we can apply the common agent filter.
If the benefit function is not separable, say if it is b(

∑
k∈N qk)α, for some α

in (0, 1], then the analysis would be more complicated. Our conjecture is that -
even though exact club sizes would be diffi cult to compute - the results would
still hold. This is partly informed by the knowledge that the results of Section
5 - the sequential multi-lateral model - would definitely hold. This is because
the more general treatment of the problem in Dutta-Siconolfi (2024) considers
any game, not just those with separable payoffs.
Dynamic Model - One clear shortcoming of the analysis is that the model

is static.10 There is one widely studied dynamic climate model that does fit
into the framework here. This is the model introduced in Dutta-Radner (2004,
2009) which has been used by, among others, Harstad (2016, 2023), Chander
(2017) and Battaglini and Harstad (2016), since it has a "static reduction". In
that model, the stock of greenhouse gases (GHGs) gt builds up between t and

10Of course, the same criticism can be levied against the vast literature that is summarized
in Barrett (2004).
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t+ 1 through the transition equation

gt+1 = σgt +

N∑
i=1

eit, (23)

where 1− σ ∈ (0, 1)) is the "depreciation" (photosynthesis) factor and eit is
the emission by country i in period t. Payoffs are ongoing and period t payoffs
are given by

hi(eit)− cigt, (24)

where hi(ei) is a strictly concave utility function ("GDP") for country i.
It represents the costs and benefits of producing and using energy (that then
produces emissions ei). The damage cost caused by GHG is linear and equals
cigt where ci > 0 is a constant marginal cost.
For a sequence of energy choices, we get the associated sequence of GHG

stocks through Eq. 23. Then, lifetime payoffs for country i are given by

∞∑
t=0

δt[hi(eit)− cigt]. (25)

A Simplification of Lifetime Payoffs - That the transition function, Eq. 23, is
linear in the stock g and so is the stage payoff, Eq. 24, implies that lifetime payoff
to energy usage ei at date t can be computed on a stand-alone basis; separable
from the GHG stock at t, emissions of other countries at t and emissions by
country i in subsequent periods. The associated lifetime payoff to country i
from energy usage ei at date t is given by

hi(ei)− δwiei, (26)

where wi = ci
1−δσ and the associated lifetime cost to country j 6= i from that

same action, denoting wj =
cj

1−δσ , is

−δwjei. (27)

Eqs. 26 and 27 are derived as follows. Energy usage ei gives an immediate
t−th period (GDP) benefit hi(ei); that is the first term. It also adds emission ei
to period t+1 GHG stock via the transition equation, Eq. 23, σei in period t+2,
σ2ei in period t + 3, and so on. Given linearity in cost, Eq. 24, the marginal
GHG cost is independent of other countries’ energy choices and subsequent
choices of country i; it equals ciδ in period t + 1, ciδ

2σ in period t + 2, and so
on. Hence, lifetime cost is δ ci

1−δσ ei ≡ δwiei. By identical arguments, ei adds
a per-period cost δ cj

1−δσ ei ≡ δwjei to j 6= i.
The above argument implies that there is a stage-game, with no reference

to the state variable g, and player i′s payoffs in the stage game are given by

hi(ei)− δwi
N∑
j=1

ej , (28)
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a function separable across other players’actions ej and state g.
Suppose now that there is a cap ei on total emissions that any country i can

possibly generate. Abatement then can be written as qi ≡ ei − ei. Hence, Eq.
28 can be re-written as

gi(qi)− δwi
N∑
j=1

ej + δwi

N∑
j=1

qj (29)

= bi

N∑
j=1

qj − Ci(qi),

where bi ≡ δwi, Ci(qi) ≡ gi(qi) − δwi
N∑
j=1

ej and gi(ei − ei) ≡ hi(ei). Of

course, Eq. 29 is a heterogenous specification that can be turned into the ho-
mogeneous Barrett model by restricting hi(•) and ci to be country independent.
This static reduction of the Dutta-Radner model can then be used as a

justification for the model studied in this paper. Of course, many other dynamic
models of climate change will not have such a static reduction and in those cases,
the static assumption made here will remain a constraint on the generality of
the conclusions.
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